Synthesis of the Trichothecene Mycotoxin, 1-2 Tetraol

Ernest W. Colvin," Mark J. Egan, and Fraser W. Kerr

Department of Chemistry, University of Glasgow, Glasgow G72 **SQQ,** *UK*

The synthesis, as its tetra-acetate (neosolaniol diacetate) **(21),** of T-2 tetraol **(l),** the parent member of a group of trichothecene mycotoxins including the highly toxic T-2 toxin (2) and HT-2 toxin **(3),** is described.

The trichothecene mycotoxins constitute a major group of complex fungal sesquiterpenoids. **1** They possess a wide range of largely adverse biological behaviour, including antibacterial, antiviral, cytostatic and phytotoxic activity. Despite some 80 non-macrocyclic trichothecenes being known, only a few have yielded to total synthesis;2 these include trichodermin **,3** trichodermol,4 verrucarol,5 anguidine *,6* calonectrin *,7* and 12,13-epoxytrichothec-9-ene.⁸

Continuing our studies on the syntheses $3,9$ and synthetic transformations10 of the trichothecene mycotoxins, we communicate the first synthesis of the complex trichothecene, T-2 tetraol **(1).** The synthetic sequence is outlined in Scheme 1. Our synthetic strategy consisted of five key elements: (a) construction of the cis-fused *AB* ring system by a Diels-Alder cycloaddition, (b) formation of ring *C* by an intramolecular

(1) $R^1 = R^2 = R^3 = H$ (2) R^1 = $(Me)_2$ CHCH₂CO, $R^2 = R^3 = Ac$ **(3)** R^3 = **(Me)**₂CHCH₂CO, R^2 = Ac, R^3 = H

aldol reaction, (c) creation of the 3α , 4β diol functionality of ring C by a stereoselective α -oxygenation/reduction protocol, (d) ring *A* enone formation *via* a regiospecific thermodynamically controlled α -selenylation, and (e) regio- and stereospecific reduction of this enone to the required α -alcohol.

Scheme 1. *Reagents and conditions:* i, isoprene, toluene, 120 "C (sealed tube), 1 h; ii, MeOH, Et_3N , 0 °C, 41% overall; iii, LiCuMe₂, $Me₃SiCl$, $Et₂O$, -78 °C to room temp., 55%; iv, *m*-chloroperbenzoic acid (MCPBA), Na₂HPO₄, CH₂Cl₂, 0 °C, 2.5 h, 81%; v, ethane-1,2diol, $BF_3 \cdot Et_2O$, CH_2Cl_2 , room temp., 18 h, 61%; vi, LiAl H_4 , Et₂O, 0 "C, *0.5* h, 94%; vii, toluene, Et3N *(5%),* 110 "C, 24 h, 89%; Viii, BufMe2SiOS02CF3, 2,6-lutidine, CH2C12, room temp., *0.5* h, 89% ; ix, NaIO₄, OsO₄ (cat.), Et₂O, H₂O, room temp., 18 h, 88%; x, H5106, Et20, room temp., *5* min; xi, NaOMe, MeOH, reflux, 0.5 h, 62% overall; xii, dihydropyran, PPTS, room temp., 12 h; xiii, $Ph_3P=CH_2$, tetrahydrofuran (THF), hexane, reflux, 18 h; xiv, ethane-1,2-diol, PPTS, CH_2Cl_2 , reflux, 18 h, 61% overall; xv, CrO_3 , 3,5-dimethylpyrazole, CH₂Cl₂, room temp., 1 h, 81%; xvi, KN(SiMe3)2, toluene, THF, 0 "C, 1 h; xvii, **2-p-tolylsulphonyl-3-(p**nitrophenyl)oxaziridine, THF, -78 °C to room temp.; xviii, NaBH₄, MeOH, 0 "C, 0.5 h, 37% overall; xix, MeOH, PPTS, room temp., 48 h, 90%; xx, MCPBA, Na2HP04, CH2C12, room temp., 48 h, *50%;* xxi, Ac₂O, pyridine (py), Et₂O; xxii, Bu₄NF.3H₂O, THF, room temp., 48 h; xxiii, AczO, py, 84% overall; xxiv, PhSeCl, PPTS, AcOEt, room temp., 48 h, 85%; xxv, *03,* CH2C12, -78 "C to **room** temp., 72%; xxvi, LiBu^s₃BH, THF, -78 °C⁵ to room temp., 1 h; xxvii, Ac_2O , py, 88% overall.

J. CHEM. SOC., CHEM. COMMUN., 1990

Cycloadditionll **of** coumalyl chloride **(4)** with isoprene followed by esterification of the product mixture gave the adduct (5) ^{\dagger} and its regioisomer (isomeric ratio 4:1). Treatment of this mixture with lithium dimethyl cuprate gave, after purification,\$ the lactone **(6)** as a single methyl epimer. Epoxidation provided the epoxide **(7),** again as a single epimer, reaction of which with ethane-1,2-diol in the presence of BF_3 · Et_2O provided the ketal (8) .

Following established methodology,⁹ two-step oxidation of the lactone enolate to the α -ketolactone, followed by allylation of this in its enol form and reductive deoxygenation gave the allyl enol ether **(9).** Hydride reduction of the ester function, followed by Claisen rearrangement and alcohol protection using t-butyldimethylsilyl trifluoromethanesulphonate¹² provided the α -allyl ketone (10) and its epimer (epimeric ratio 3.2 : 1). Attempted ozonolysis, to generate the required aldehyde moiety, proved unsuccessful. Remarkably, catalytic osmylation in the presence of sodium metaperiodate stopped at the diol stage, with isolation of the tetrahydrofuran **(11).** However, treatment of this with ethereal periodic acid13 resulted in clean cleavage to the desired aldehyde **(12).**

Aldol cyclisation followed by pyridinium toluene-p-sulphonate (PPTS) catalysed¹⁴ tetrahydropyranylation gave the full tricyclic system, as a mixture of 3β (13) and 3α epimers (epimeric ratio 4.2:1). The more abundant 3β epimer was subjected to the Wittig reaction to give the alkene **(14).** Selective tetrahydropyran (THP) ether deprotection, using ethane-1-2-diol in the presence of PPTS, followed by chromium trioxide-3,5-dimethylpyrazole¹⁵ oxidation led to the ketone **(15).**

Oxaziridine-mediated α -hydroxylation¹⁶ of the enolate of this ketone, followed by hydride reduction gave the desired 3α ,4 β diol (16), both reagents having attacked from the less hindered *exo* face of the oxabicyclo^{[3.2.1}] loctane sub-unit.¹⁷ Selective acetal deprotection followed by epoxidation gave the keto-epoxide **(17).**

Fluoride-induced deprotection and per-acetylation gave the keto-triacetate **(18).** This ketone was identical in all respects, apart from being racemic, with the ketone obtained by catalytic hydrogenation of the naturally derived^{10b} enone (20). This latter homochiral ketone **(18)** was used to complete the synthesis. PPTS-catalysed α -selenylation provided the selenide **(19)** as a mixture of epimers, but regioisomerically pure. Selenoxide formation and cycloelimination then provided the

enone **(20).** Regio- and stereo-specific reduction of this enone using lithium tri-S-butylborohydride provided the *8a* alcohol. Acetylation provided T-2 tetraol tetra-acetate (21) , $[\alpha]_D^{25}$ *+55.5" (c* 0.128 in AcOEt), m.p. 182-183 "C (lit.,18 178-179 "C), with spectral properties identical in all respects with literature data.18.19

We thank the University of Glasgow (studentship to F. **W.** K.) and the S.E.R.C. (studentship to M. J. **E.)** for financial support.

Received, 10th May 1990; Corn. 0102078H

References

- 1 J. F. Grove, *Nut. Prod. Rep.,* 1988, 187, and refs. therein.
- 2 (a) P. G. McDougal and N. R. Schmuff, *Fortschr. Chem. Org. Naturst.,* 1985,47,153; (b) *Synform,* ed. G. Quinkert, 1984,4,229 *(Chem. Abstr.,* 1985, 103, 71517e).
- 3 E. W. Colvin, *S.* Malchenko, R. A. Raphael, and J. *S.* Roberts, *J. Chem. SOC., Perkin Trans. 1,* 1973, 1989.
- 4 W. C. Still and M. Y. Tsai, J. *Am. Chem. SOC.,* 1980, 102, 3654. 5 R. H. Schlessinger and R. A. Nugent, *J. Am. Chem. SOC.,* 1982, 104, 1116; B. M. Trost and P. G. McDougal, *ibid.,* 1982, 104, 6110; W. R. Roush and T. E. D'Ambra, *ibid.,* 1983,105,1058; M. K. O'Brien, A. **J.** Pearson, A. A. Pinkerton, W. Schmidt, and K. Willman, *ibid.,* 1989, 111, 1499.
- 6 D. W. Brooks, P. G. Grothaus, andH. Mazdiyasni, J. *Am. Chem. SOC.,* 1983, 105, 4472.
- 7 G. A. Kraus, **B.** Roth, K. Frazier, and M. Shimagaki, J. *Am. Chem. SOC.,* 1982, 104, 1114.
- **8** Y. Fujimoto, **S.** Yokura, T. Nakamura, T. Morikawa, and T. Tatsuno, *Tetrahedron Lett.,* 1974, 2523; N. Masuoka and T. Kamikawa, *ibid.,* 1976, 1691; D. H. Hua, **S.** Venkataraman, R. Chan-Yu-King, and J. V. Paukstelis, J. Am. *Chem. SOC.,* 1988, 110, 4741.
- 9 E. W. Colvin and I. G. Thom, *Tetrahedron,* 1986, 42, 3137.
- 10 (a) S. Cameron and E. W. Colvin, *J. Chem. Soc., Perkin Trans. I,* 1989,365; (b) 1989, *ibid.,* 887; (c) E. W. Colvin and S. Cameron, *Heterocycles,* 1987, 25, 133.
- 11 B. A. Brown and E. W. Colvin, *J. Chem. SOC., Chem. Commun.,* 1984, 1514.
- 12 E. J. Corey, **H.** Cho, Ch. Rucker, and D. H. Hua, *Tetrahedron Lett.,* 1981, 22, 3455.
- 13 L. F. Fieser and M. Fieser, 'Reagents for Organic Synthesis,' John Wiley, New York, 1967, p. 817.
- 14 M. Miyashita, A. Yoshikoshi, and P. A. Grieco, J. *Org. Chem.,* 1977,42, 3772.
- 15 E. J. Corey and G. W. Fleet, *Tetrahedron Lett.,* 1973, 4499.
- 16 F. A. Davis, L. C. Vishwakarma, **J.** M. Billmers, and J. Finn, *J. Org. Chem.,* 1984, 49, 3241.
- 17 Kraus has devised a closely related protocol: G. A. Kraus (Iowa State University), personal communication.
- 18 K. Ishii, S. V. Pathre, and C. **J.** Mirocha, J. *Agric. Food Chem.,* 1978, 26, 649.
- **19** M. E. Savard and R. Greenhalgh, J. *Nut. Prod.,* 1987, 50, 953.

 \uparrow Compounds (5)-(18) are racemic; all other stereochemically defined compounds are homochiral.

^{3:} All reported compounds were fully characterised by elemental analysis and/or high resolution mass spectrometry, and IR and ¹H and 13C NMR spectroscopy.